Position/Orientation-Aware Physical Tags Using Photo Sensors and Accelerometers for a Tangible Tabletop Interface

Umi Kawamoto1,2, Takeshi Kurata1,2, Nobuchika Sakata3, Takashi Okuma1, Hideaki Kuzuoka2

1Information Technology Research Institute, AIST
2University of Tsukuba
3Osaka University
1st TTT
(Tangible TableTop Interface)

Direct and intuitive operations
- Direct manipulation of GUI objects using physical tags
- Affordances of physical tags
- Asymmetric bimanual manipulation

Interfaces (experts side)
- Physical tags
- Ultrasonic receivers
- Large touchscreen LCD

Operating GUI objects using tags
A Measuring method in 1st TTT

- 3D ultrasonic tagging system

Problems of this method
- Time lag when a window follows a tag
- Difficulty to measure the orientation
- Difficulty to simplify the equipment
- Interruption by user’s hand

Examples of time lag of following windows and interruption by user’s hand
A novel method for measuring the position and orientation of the tags

The proposed method using...
- Photo sensors
 - Observing fiducial marker patterns
- Accelerometer

Advantages of proposed Method
- Measurable tag’s orientation
- High rate measurement
- Resistant to obstacles
- Simple equipment
- Only tags and a display

Tracking tag’s motion by using photo sensors and a fiducial marker pattern

An example of fiducial marker pattern
Related works
~ measuring physical objects ~

- Multiple LC tags
- Cameras (& markers)

- Need complicated device
 - Special display
- Difficult to measure 3D motion

SenseTable

Microsoft Surface
The measuring method with photo sensors

Measuring relative position/rotation between a tag and a marker pattern

1. Show a fiducial marker pattern under a tag
 - When a tag lands on a display
2. Calculate output signals of photo sensors
3. Do 1&2 recursively
Improvement of a circular marker pattern

New circular marker pattern

Conventional circular marker pattern

\[l_x = l_y = 0 \text{ in these figures} \]
Advantages of the new circular marker pattern

1. Fewer photo sensors
2. Smaller marker size $\rightarrow 65\%$
3. Smaller tag size $\rightarrow 50\%$
4. More robust measurement
 - In boundary regions

New circular marker

Conventional circular marker

65% smaller
Measuring position/orientation of a tag using circular marker pattern (Low-speed measuring mode)
Hybrid measurement method with photo sensors and accelerometers

- Measurement using photo sensors
 - Measurable position/rotation precisely

- Measurement using accelerometers
 - Measurable 3D position/orientation

Hybrid measuring method
- Measurable position/orientation precisely in wide area
- Four measurement modes
 - for typical motion of a tag
High-speed measurement mode

~Rectangular marker pattern~

Predicting the size & direction of the pattern

- Extend the size of the pattern as a tag translates fast
 - Allow the movement in wide range per frame
 - Circular marker pattern limits the motion per frame

- Prediction the direction & the size
 - Accelerometer
 - Result of Low-speed measurement mode
 - Just before this mode

Measuring the position by using a rectangular pattern
Measurement of fast translation using a rectangular marker pattern (High-speed measurement mode)
Wide-area search mode
~Rectangular marker pattern~

- Measure 3D motion of a tag
 1. Detect a tag’s levitation
 2. Detect a tag’s landing
 3. Estimate tag’s landing point
 - Flying time
 - Acceleration detected in step 1
 4. Search for the tag in a wide area
 - Around the estimated landing point
 - Sequentially Shrinking and rotating rectangular pattern

Step 4. Searching for tag in a wide area by using rectangular pattern
Measuring 3D motion of a tag (wide-area search mode)
Static mode

~Hidden marker pattern~

- Detect whether a tag is static or not
 - An accelerometer
- Less obstacle marker
 - Cut marginal area of a circular pattern
- More sparse interval of tag’s communication

Circular pattern

Hidden pattern

Display hidden pattern (static mode)
Wireless tags & measuring multiple tags

- Wireless tags
 - Photo sensors
 - An Accelerometer
 - (Gyro sensors)
 - A Radio communication device

- Multiple communication
 - 60-90Hz per tag
 - 5 tags’ communication

- Clear the problems of the 1st TTT
 - High rate measurement
 - Resistant to obstacles
 - Measurable tag’s orientation
 - Simple equipment
Conclusion

Novel method of measuring position/orientation of physical tags for the TTT
- Need tags and a display only
- Use photo sensors and accelerometers
- Use the new fiducial marker patterns
 - The size of a tag & a marker got smaller
- Measure the position/orientation of Multiple wireless tags

New circular pattern
Rectangular pattern
Hidden pattern

A wireless tag on a marker pattern
Photo sensors embedded on bottom face of a tag
Future works

- Improve this method
 - Using gyro sensors in combination
 - Enhance interaction
- Improve tag hardware
 - Battery capacity
 - Changing Shape
 - Enhance affordance
- Evaluate the system

I’ve brought the wireless tags
 - Please contact me