Tangible TableTop (TTT) Interface Based on Position/Orientation Measurement of Tags Using Photo Sensors and Accelerometers

Umi Kawamoto\(^1\), Takeshi Kurata\(^1\), Nobuchika Sakata\(^1,2\), Takashi Okuma\(^1\) and Hideaki Kuzuoka\(^2\)

\(^1\)Information Technology Research Institute, AIST \(^2\)University of Tsukuba

Supporting remote collaborative works between an expert and multiple field workers in direct and intuitive way

- Direct operations of GUI objects by using physical ‘tags’
- Affordances of the physical ‘tags’
- Asymmetric bimanual interaction technique with ‘tags’

PROPOSED MEASURING METHOD OF PHYSICAL ‘TAGS’

Complementary fusion of two types of sensors in each tag

Photo sensors + fiducial marker patterns shown on the display

- precise position/orientation measurement
- proposed marker pattern can alleviate the influence of ambient light and unevenness of display luminance

Accelerometers

- keep tracking the 3-D motion

3 Measuring Modes

<table>
<thead>
<tr>
<th>Names</th>
<th>Basic mode</th>
<th>High speed measuring mode</th>
<th>Reinitialize mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used marker patterns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information from accelerometers</td>
<td>Whether tags move</td>
<td>Which direction tags move</td>
<td>Where tags land on the Display</td>
</tr>
<tr>
<td>Features</td>
<td>Precise position/orientation measurement</td>
<td>Wide range Measurement Size & direction of patterns change according to tag’s movement</td>
<td>Wide area search Time series changing of size, direction & position of patterns</td>
</tr>
</tbody>
</table>